An average, well-developed stock engine intended for use in a sports / touring motorcycle will have a bmep of about 70 psi. It is possible, and I must stress that word "possible", to raise this to perhaps 115 psi- an improvement of some 64-percent, which (if accomplished) will yield a 64-percent increase in power output without raising the engine's operating speed. Similarly, a 64-percent increase in operating speed without a change in bmep would have the same effect on output. You will see this in the following formula for calculating horsepower:
Where BHP is brake horsepower
P is brake mean effective pressure, in psi
L is piston stroke, in feet
A is the area of one piston, in square inches
N is the number of power strokes per minute
Obviously, when the values of L and A are held constant, as would be the case with an engine having a piston displacement at the limit established for a particular racing class, then increases in power may only be obtained by increasing the values for P and N -and you will find that in practice it is a lot easier to increase the latter than the former.
As already stated, bmep figures for stock, touring-type engines with flow-restricting air cleaners and mufflers, and with porting / carburetion compromised in favor of smooth low-speed running, will be around 70 psi. Typical figures for engines with porting and other plumbing arranged solely (and effectively) for maximum horsepower at peak revs would be about 115 psi - with a few small, highly-developed two-stroke engines operating up at 125 psi. The exact number will vary according to unit cylinder displacement and the width of an engine's useful power band, but one may reasonably expect that engines suitable for motocross will fall in the 85-95 psi range - with big cylinders tending toward the lower figure and small cylinders vice versa. Road racing engines, tuned to exert a maximum effort over a very narrow speed range, will usually show a bmep of 100-115 psi, and of course the same remarks regarding the influence of cylinder size apply.
These numbers have a usefulness beyond the mere satisfaction of vulgar curiosity: they may be used very profitably to determine an engine's suitability for some particular application. For example, they shed light on the future prospects of those who are trying to transform Kawasaki's F-5 “Bighorn” engine, a 350cc single, into a prime-mover capable of ending the Yamaha TD-2's absolute domination in road racing. Much has been made, by the Kawasaki's supporters, of the usefulness of a broader power range inherent with the F-5's disc-valve induction and the l00cc advantage it gets, over the TD-2, by having only a single cylinder (this, under the present American Motorcycle Association rules). Now while it is true that a racing motorcycle having a wide power band is easier for its rider to manage, and may offer an absolute if very slight advantage on short, extraordinarily twisty circuits, one must not overlook the fact that the TD-2 has been blessed with an excellent close-ratio transmission and a number of riders quite capable of coping with any problems introduced by the need for frequent gear changes. Viewed realistically, the situation facing any serious challenger to Yamaha's supremacy is one in which horsepower must be met with horsepower. And what are the Kawasaki's prospects of developing that kind of horsepower? Let's have a look at the numbers:
Predicting Power