Piston Speed

All this asks the question, “How does one determine the limit, with regard to engine speed?” Unfortunately, establishing this limit with any precision is not only extremely difficult in terms of the mathematics involved, but also requires data concerning metallurgy, etc., seldom available outside the record-rooms of the factories from which the engines originate. Still, there are guide-lines which, if lacking in absolute precision, do at least have the virtue of simplicity, and will provide an indicator to keep us away from certain trouble. It is almost impossible to establish the point, in engine speed, between zero trouble and the possibility of trouble; there is much less difficulty in determining a red-line between some trouble and nothing but trouble.
A quick and easy method of establishing a limit for crankshaft speed is by working with piston speed. Actually, with "mean" piston speed: pistons do not travel at uniform velocity; they move from a dead stop at each end of their stroke, accelerate up to a maximum speed that often is in excess of 120 mph, and then brake to another complete stop. For convenience, we use just the mean piston speed and the safe limit for that, for engines having bore-stroke dimensions within the range considered normal for motorcycles, is about 4000 feet per minute. And mean piston speed may be calculated very easily by applying the following formula:
Cm = 0.166 x L x N
Where: Cm is mean piston speed, in feet per minute
L is stroke, in inches
N is crankshaft speed, in revolutions per minute

Thus, using again the Kawasaki F-5 engine as an example, with L being 2.68-inches and N given as 9000, we find that

Cm = 0.166 x 2.68 x 9000
Cm = 4000 ft/min

Here we have a theoretically-predicted limit that seems to agree quite closely with observable reality in the field: Reports from those actually racing modified F-5 Kawasaki’s indicate that the engine does in fact retain acceptable (within the framework of that word's meaning in racing) reliability when red-lined at 9000 rpm, and ravels with horrifying abruptness if pressed further. Of course, it must be stressed here that few engines, the F-5 not excepted, retain more than marginal reliability at mean piston speeds of 4000 ft/min, and even this presupposes frequent replacement of the piston and the crank/rod bearings.
You will be on far more solid ground if your engine is not asked to endure mean piston speeds above 3500 ft/min. Anything above that takes an engine into the twilight zone of reliability, and the ground between 3500 ft/min and the near absolute limit of 4000 ft/min is covered with unpleasant possibilities, but these often may be minimized with the proper selection of materials and lubrication. I should note here that there are exceptions to this rule among some of the old-fashioned, long-stroke engines, which tend to have very light (and strong) reciprocating parts relative to their absolute stroke. An example that comes to mind is the Bultaco 125cc TSS, which had a stroke of no less 2.36-inches (decidedly long for a 125) but which would, in “factory” road racing trim run up to 11,500 rpm, just like the Yamaha TD-2 (with a much shorter, 1.97-inch stroke), and that represents a mean piston speed of 4500 rpm. Obviously, Bultaco held the opinion that the resulting thin-ish margin of reliability was acceptable, but their TSS never was as predictably trouble-free as Yamaha's TD-2, which at the same crankshaft speed (11,500) has a mean piston speed of only 3775 ft/min.
While on the subject of bore/stroke dimensions, I would like to say that there is much in favor of long stroke two-stroke cycle engines in many applications. They are not superior (as many people seem to think) compared to the present day short-stroke designs in terms of low-speed torque, as torque is entirely a function of displacement and bmep, and wholely unrelated to bore/stroke ratios. With a long stroke, there is (at any given displacement) a reduction in bore, and with it a loss of piston area against which gas pressure can exert its force, that exactly balances the loss of leverage in a short-stroke engine (which is, in turn, compensated by a gain in piston area). The only thing wrong with the long-stroke engine is that its crankshaft speed is limited by inertia loadings, and that in turn limits its absolute power potential as compared with the “modern” short-stroker. On the other hand, it is compensated by having a much more compact combustion chamber, which makes for more efficient burning, and by lower thermal loadings on the piston as a result of the smaller crown area into which heat from the combustion process may soak. Finally, there is an advantage in port area for the long-stroke design resulting from its relatively large cylinder wall area. This area increases in the long-stroke engine because displacement rises only in direct proportion to stroke, but is increased by a factor of 3.14 (the constant, pi) with enlargements in bore. These are very real advantages, but they are not enough, usually, to prevail against the short-stroke engine's sheer ability to rev. Crankshaft speed is the only thing subject to much juggling in the horsepower equation- and is a far more potent factor in determining power output than the relatively slight improvements in bmep obtainable with the marginally better combustion chamber and porting in the long-stroke engine. A 10-percent improvement in our Kawasaki F-5 engine's bmep (a large improvement indeed) would raise its output to 52.3 bhp; leave the bmep unchanged, but shorten the stroke and spin it 11,000 rpm and you would have 61.3 bhp. There is indeed no substitute for revs.