The piston (6)

Excessive deep clearance bands must be avoided, for they expose the sealing ring to too much heat, and heat has a devastating effect on the service life of a piston ring. But for these effects, there would be every reason to locate the ring as close to the piston crown as is mechanically possible, because we would then obtain the cleanest opening and closing of the ports; with the ring in its usual position, about 0.200-inch below the piston crown, there is a tendency for gases to leak down the side of the piston, and the port-opening process thus becomes more gradual than is desirable. The effect is slight, but it is there, and for that reason ring location always is a matter of juggling the conflicting requirements of keeping the ring cool, and obtaining sharp, clean port-opening characteristics. And in most instances, the balance of this compromise will be in favor of the former, for an overheated ring quickly fails. The cause of this failure is twofold: first, excessively high temperatures effectively anneal the ring, and it loses its radial tension; second, an overheated ring warps like a potato chip, and no longer maintains close contact with the bottom of its groove. In both of these cases, the ring's ability to seal is reduced, which allows fire to start leaking down past the ring, and that further raises its temperature -starting a cycle that soon results in outright ring failure.
The single exception to the unpleasantness just described is the L-shaped “Dykes” ring, which also is excepted from the immediate effects of ring-flutter (described elsewhere). A number of engines have been fitted very successfully with Dykes rings located right at the tops of their pistons, and the dire effects of excessive heating are avoided because the Dykes ring's vertical leg has enough area in contact with the cooler cylinder wall to draw away heat faster than it can be added by the ring's contact with high-temperature gases. At least, that's the way the situation can be, if everything is right. On the other hand, it is worth remembering that many users of Dykes-pattern rings have been forced to fabricate them from stainless alloys to overcome temperature related troubles, and even then have experienced problems with oil carbonizing in the ring grooves. Probably the best thing to be said for Dykes-pattern rings from the experimenter's viewpoint is that they can be used to overcome the problem of using stock pistons at very much higher than stock crankshaft speeds. If, for example, you would like to use the stock piston, but cannot because it has been grooved for rings 2.0mm thick and you must use 1.5mm rings to avoid ring flutter, you can simply cut a new groove at the top of the piston for a Dykes ring and the problem is solved -unless you encounter some of the other difficulties just discussed.