With all that, high silicon-content piston alloys still are not universally employed. As it happens, such alloys do have their disadvantage, which is that they are difficult to manufacture. Just casting pistons of aluminum-silicon alloy is a task for specialists using specialized equipment; machining the raw castings into finished pistons is an even more formidable task. You may encounter this last difficulty if you have occasion to modify a cylinder cast from the material in question - and you will find that it blunts cutting tools of any kind with remarkable rapidity. For you, that will be an inconvenience; for the mass-producer of pistons it is a disaster, as the need for frequent re-sharpening of tool bits entails losing output from his machinery while such repairs are made, and it means the expense of the man-hours required for the repairs. Thus, the manufacturer has every reason to restrict the silicon content of the piston alloys he uses to the minimum required by the use to which his engines will be put, which is the reason why Yamaha, for example, uses different alloys for touring and racing pistons.
In point of fact, the Japanese seem to manage high silicon-content pistons better than anyone else, which may well account for their notable superiority in coaxing power from two-stroke motorcycle engines. All of the major Japanese manufacturers employ piston alloys in their touring engines having percentages of silicon high enough to be considered “racing only” in much of the rest of the world. And, sad to say, many of the “racing” pistons being offered by speed equipment manufacturers are inferior in this regard to the ordinary off-the-shelf parts you'll find at your local dealer in Japanese motorcycles. For that reason, I am inclined to use either stock or “GYT-kit” pistons when I am working with engines carrying a “made in Japan” label, rather than waste my money on a specialty replacement. There are, of course, exceptions to this rule, which evolve principally around ring widths, and I will deal with that in due course.
The piston (2)