Of all the problems that can be experienced with a modified engine, those connected with the pistons' rings are the most insidious. Borderline sealing failures can send fire shooting down along the pistons' sides to cause seizures and/or holing of the piston crown that appear to be the result of lean mixture, excessive ignition advance or too-high compression, but are not. These failures are, I suspect, much more frequent than is commonly supposed, for the 2.0mm rings that have become almost standard will begin to flutter when piston acceleration rises above about 60,000 ft/sec2 and it is entirely too easy to exceed that limit with a modified touring engine. Therefore, I would again urge you to do your homework before starting a development program with any engine. A formula for predicting the onset of ring flutter is provided in the chapter headed, “Fundamentals”, and you may save yourself a lot of grief by determining your engine's red-line with paper and pencil instead of through experimentation. At the same time, I must caution you against simply assuming that very narrow rings are an advantage in all engines. In fact, there is no detectable power difference between the standard 2.0mm ring and the “racing” 1.0mm ring below 7000 rpm, and the wider ring has the advantage of better durability right up to the point where piston acceleration starts it fluttering. Neither is there any advantage, below 7000 rpm, in the use of single-ring pistons. Above that level the lower friction of the single-ring piston begins to make a difference, but in the lower speed ranges you may as well use two-ring pistons and take advantage of their “second line of defense” capability.
Selection of ring-type will usually have been made for you by the piston manufacturer, and my advice is that you do not try to improve upon his judgment, which will be almost impossible in any case. You cannot, obviously, re-machine a piston made for 2.0mm rings to take 1.0mm rings -unless you cut a new ring groove above the existing grooves, and that would position your ring perilously close to the piston crown and almost certainly lead to immediate ring failure. The only way around this is to fit a Dykes-pattern ring, right up at the piston crown - as was noted previously. Such modifications can be very successful, if you have the right ring for the application and cut the groove correctly for the ring, but I cannot recommend the procedure simply because there is so much room for error. In general, I think it is far better to replace the stock piston with one fitted with thinner rings - even if the replacement piston is cast of somewhat inferior material, as is often the case. After all, the best of pistons will fail if its rings are not suited to the job it is being asked to perform. On the other hand, rings of less-than-desirable material will perform very well in racing applications if replaced frequently, and if they have not been crudely finished. Much of the ring's ability to function is related to this latter aspect. The ordinary cast-iron ring is fragile, and will shatter very quickly if allowed to flutter, but it will perform entirely satisfactorily if its lower surface is smooth and true, and seals against the bottom of the ring groove. Rings made of nodular cast-iron have the same wear-resistant properties, and are vastly stronger, for which reasons this material is almost universally used. Surface coatings, ranging from chromium to Teflon, are often applied to the piston's ring's face, to improve service life and /or prevent scuffing during break-in.
Piston Rings