Not too surprisingly, the equilibrium described is influenced by combustion chamber design-as is the point at which smooth burning gives way to the outright explosions we call detonation. This aspect, too, is widely appreciated, but not widely understood. In truth, most people have very little understanding of the events that follow ignition; events that are highly complex if studied with regard to their chemistry but really quite straightforward taken in less narrow terms. Much of the misunderstanding that exists has been created by the popular press, which insists upon saying that a piston is driven downward on its power stroke by a burning mixture. In reality, the burning of fuel in the cylinder is simply a means of raising the temperature of the working gas (air; actually a mixture of gases) and thereby raising its pressure. This relationship was formulated long ago by Boyle as:
Here, for anyone who cares, is what happens from the moment of ignition: Several thousandths of an inch of travel before the piston reaches the top of its compression stroke, representing somewhere between 20- and 45-degrees of crank rotation, the trapped air/fuel charge is ignited by the spark plug and burning commences. At first, the process proceeds quite slowly (relative to subsequent crank rotation before TDC). A small bubble of fire expands gently away from the point of ignition between the spark plug's electrode and ground wire, and if all combustion were to continue at this pace it would hardly be completed in time for the following compression stroke. However, this small flame quickly heats the remaining mixture enough to enormously increase the rate at which burning occurs, and after the initial delay, the flame-front accelerates outward from its point of origin with ever-increasing rapidity - sweeping throughout the combustion chamber. And if the engine has been given the proper amount of spark advance, the piston will have just moved up to the top of its stroke as the rapid phase of combustion begins, so that the bulk of the burning is done while the piston is virtually stopped and the mixture compressed to minimum volume. By the time the crankshaft has rotated a few more degrees, and the piston is once again moving downward, the combustion process will have been almost entirely completed.
The preceding is what happens in the normal course of events; combustion does not always occur that neatly. The most common, regrettable combustion irregularity is detonation, the harsh knocking you hear just before an engine seizes, or melts a piston - and the noise you would hear, when running an engine on a dynamometer, as the needle on the scale begins an ominous retreat. Unhappily, the very process by which the mixture in the combustion chamber is re-heated before its actual contact with the flame-front advancing from the spark plug, and rapid combustion thus made possible, is the process that may also lead to the sudden explosion of the combustion chamber's contents that we call detonation. Here's how it happens: It has already been noted that as the flame-front advances, the combustion chamber's remaining unburned mixture is heated, and this heating is caused not only by direct contact with the flame, but also by radiation and the overall pressure rise within the chamber. If the temperature of this remaining mixture is raised to its ignition point, all of it is consumed at the same instant in a single explosion. This explosion creates a shock, due to a fantastically rapid pressure rise, that strikes out against all its surroundings hard enough to make detonation’s characteristic knock - and it is a shock with a force often sufficient to break the spark plug insulator's tip and damage both the piston and bearings. Even so, its worst effect is to force a lot of heat out into the piston, cylinder head and the cylinder walls. These are thus brought to abnormally high temperature, which tends to overheat the next air/fuel charge and make it detonate even more quickly and severely.