CRANK ASSEMBLY

There are gains in power and reliability to be had from carefully aligning your crankshaft and main bearing bores, and in getting the cylinder axis precisely perpendicular to the crankshaft. As it happens, there is more variation in production tolerances when the various parts of a crankshaft are made than can comfortably be tolerated in a racing engine. Crankpin holes in flywheels are not all precisely the same distance from the main shaft axis; factories "select-fit" these parts, and you can be fairly certain that a new crankshaft is true, but if you manage to ruin any of its flywheels, do not assume that a replacement flywheel, selected at random from the nearest parts bin, will be a satisfactory replacement. Crankpin holes, in facing flywheels, should be matched to within 0.0002-inch with regard to their offset from the main shaft. If your local source cannot supply a single replacement wheel within that tolerance limit, I strongly urge that you purchase a complete, new crankshaft - with flywheels matched at the factory. And when rebuilding a crankshaft, with new crankpins and bearings, be certain that it is aligned to at least the tolerances suggested by the manufacturer's workshop manual. Also, check your crankcases for main bearing-bore alignment - and, more important yet, that the cylinder is exactly perpendicular with the crank axis, for any tilting will be reflected in added friction in the hearings (especially at the thrust washers) and in the piston itself.
Do not attempt to second-guess the manufacturer with regard to crankshaft and crankpin bearings unless you have very specialized knowledge in this field or can obtain the advice of someone who is an expert. Main bearings, particularly, should not be replaced with just anything that will fit, as n very special kind of bearing is employed in these applications, with clearances to accommodate the expansion and contraction of aluminum bearing housings. And the same cautionary note must be added with regard to crankshaft seals, which in the high-speed, two-stroke engine must survive extremes in temperatures and rotational speeds with very scanty lubrication. Not so very long ago, seal failures were common, but now that means have been found to Teflon-coat seal's lips, trouble is usually encountered only when the seals have been damaged in the course of installation. So handle the seals carefully, and pre-coat them with a good high-temperature grease before assembling your engine. You can also improve their reliability somewhat by polishing the area on the main shafts against which they hear to a glassy finish. The seals themselves will polish the shaft eventually, but at considerable expense to their working life.
By and large, problems with piston, connecting rod bearings, crankshaft and seals can be avoided simply by following the recommendations made in the manufacturer's shop manual. The single exception to this is in the fit between piston and wristpin, for the very high temperatures in a modified engine tend to cause a breakdown in the lubrication between pin and piston. Trouble can be avoided in the racing engine if the wristpin is a light, sliding fit through the piston; it should slip through of its own weight, without forcing, for if it is tight enough so that you have to tap it through with a mallet, you eventually may have to remove it with a hydraulic press. Too-light fits may be corrected by using an old wristpin as a lap, and a dash of some fine, non-imbedding lapping compound to polish out the piston's pin-bore to size.