expansion chamber (2)

Actual percentage improvements between engines fitted with their standard mufflers and the same engines with expansion chambers will vary greatly. A lot depends on how good (or bad) their muffler happened to be, and on carburetor size, porting, etc. -any of which can impose limits that cannot be totally compensated by even the best of expansion chambers. In most cases, however, the improvement will be in the order of 10- to 25-percent, and when the expansion chamber is given a bit of help from changes in timing, and the rest, it then becomes possible to get improvements ranging from 50- to (in some instances) over 100-percent. This difference is widely appreciated, even by those who know absolutely nothing about the expansion chamber itself and have no direct experience with the device, and that accounts for the brisk sale of accessory chambers as replacements for stock exhaust systems. It also has led many an enthusiast to construct an expansion chamber of his own design.
Sadly, the real result of most people's shade-tree experimental work is simply to discover that it remains possible to bring down on one's head all of the expansion chamber's considerable disadvantages without being compensated by an increase in performance. Or, as I heard one experimenter comment, looking bemused at the chamber he had cobbled together for his motorcycle, “It doesn't make much power… but it sure is noisy.” He was being funny, but I didn't laugh, because the only thing that distinguished him from his fellows was that he was honest about the results; most of the others do no better - but aren't willing to admit that they have made a big mistake.
Where does everyone go wrong? Usually, it is the result of simple, uncomplicated ignorance regarding the inner workings of the expansion chamber, which-all the folklore surrounding the device notwithstanding-are absurdly uncomplicated. Using a mixture of sonic wave behavior and controlled backpressure, the expansion chamber helps pull exhaust gases out of the cylinder during the initial parts of the exhaust/transfer process and hauls the fresh charge into place- and then reverses itself to prevent the charge from escaping out the exhaust port. To illustrate the point, let's watch (in slow motion) the activity through a single operating cycle, from the time the exhaust port opens and through the transfer phase until the exhaust is once again closed. From beginning to end, the process takes only about 3- to 4-thousandths of a second.